The Modelling of Degenerate Neck Pinch Singularities in Ricci Flow by Bryant Solitons
نویسندگان
چکیده
In earlier work, carrying out numerical simulations of the Ricci flows of families of rotationally symmetric geometries on S3, we have found strong support for the contention that (at least in the rotationally symmetric case) the Ricci flow for a “critical” initial geometry– one which is at the transition point between initial geometries (on S3) whose volume-normalized Ricci flows develop a singular neck pinch, and other initial geometries whose volume-normalized Ricci flows converge to a round sphere–evolves into a “degenerate neck pinch”. That is, we have seen in this earlier work that the Ricci flows for the critical geometries become locally cylindrical in a neighborhood of the initial pinching, and have the maximum amount of curvature at one or both of the poles. Here, we explore the behavior of these flows at the poles, and find strong support for the conjecture that the Bryant steady solitons accurately model this polar flow. Email: [email protected] Email: [email protected]
منابع مشابه
Non-kähler Ricci Flow Singularities That Converge to Kähler–ricci Solitons
We investigate Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities with the property that parabolic rescalings at the singularities converge to singularity models taking the form of shrinking Kähler–Ricci solitons. More specifically, the singularity models for these solutions are given by the “blowdown soliton” discovered in [FIK03]. Our results support th...
متن کاملRecent Progress on Ricci Solitons
In recent years, there has seen much interest and increased research activities in Ricci solitons. Ricci solitons are natural generalizations of Einstein metrics. They are also special solutions to Hamilton’s Ricci flow and play important roles in the singularity study of the Ricci flow. In this paper, we survey some of the recent progress on Ricci solitons. The concept of Ricci solitons was in...
متن کاملGradient Kähler-Ricci Solitons and Periodic Orbits
We study Hamiltonian dynamics of gradient Kähler-Ricci solitons that arise as limits of dilations of singularities of the Ricci flow on compact Kähler manifolds. Our main result is that the underlying spaces of such gradient solitons must be Stein manifolds. Moreover, on all most all energy surfaces of the potential function f of such a soliton, the Hamiltonian vector field Vf of f , with respe...
متن کاملGeometry of Complete Gradient Shrinking Ricci Solitons
The notion of Ricci solitons was introduced by Hamilton [24] in mid 1980s. They are natural generalizations of Einstein metrics. Ricci solitons also correspond to self-similar solutions of Hamilton’s Ricci flow [22], and often arise as limits of dilations of singularities in the Ricci flow. In this paper, we will focus our attention on complete gradient shrinking Ricci solitons and survey some ...
متن کاملON TYPE-II SINGULARITIES IN RICCI FLOW ON Rn+1
For n+1 ≥ 3, we construct complete solutions to Ricci flow on R which encounter global singularities at a finite time T . The singularities are forming arbitrarily slowly with the curvature blowing up arbitrarily fast at the rate (T − t)−2λ for λ ≥ 1. Near the origin, blow-ups of such a solution converge uniformly to the Bryant soliton. Near spatial infinity, blow-ups of such a solution converg...
متن کامل